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Abstract: Non-uniform black strings coupled to a gauge field are constructed by a per-

turbative method in a wide range of spacetime dimensions. At the linear order of per-

turbations, we see that the Gregory-Laflamme instability vanishes at the point where the

background solution becomes thermodynamically stable. The emergence/vanishing of the

static mode resembles phase transitions, and in fact we find that its critical exponent

is nearly 1/2, which means a second-order transition. By employing higher-order per-

turbations, the physical properties of the non-uniform black strings are investigated in

detail. For fixed spacetime dimensions, we find the critical charges at which the stability

of non-uniform states changes. For some range of charge, non-uniform black strings are en-

tropically favored over uniform ones. The gauge charge works as a control parameter that

controls not only the stability of uniform black strings but also the non-uniform states. In

addition, we find that for a fixed background charge the uniform state is not necessarily the

state carrying the largest tension. The phase diagram and a comparison with the critical

dimension are also discussed.
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1. Introduction

It is known that black objects with translational symmetries such as black branes and black

strings suffer from the Gregory-Laflamme (GL) instability, breaking the translational sym-

metries [1, 2]. An expectation is that they decay into individual black holes, having larger

entropy. This naive expectation, however, was called into question because of the result

by Horowitz and Maeda [3], which demonstrated that a black-string horizon cannot pinch
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off in finite affine time on the horizon. Although a dynamical simulation was reported [4],

the endpoint of the collapse remains an outstanding open problem, and several possibilities

have been pointed out [5, 6].

As a solid approach, there are extensive studies of static black objects in compactified

spacetimes, such as Kaluza-Klein (KK) spacetimes. First, a non-uniform black string

(NUBS) is constructed perturbatively in D = 5 (five-dimensional) vacuum spacetime [7],

which was generalized to arbitrary dimensions and the critical dimension was discovered [8 –

10]: the order of phase transition from uniform to non-uniform black strings is second order

for D ≥ 14 (D ≥ 13) in a microcanonical (canonical) ensemble, while it is first order for

D ≤ 13 (D ≤ 12). Recently, such critical dimensions were reproduced by an approach

based on the Landau theory of phase transition [11, 12]. Regarding the localized black

holes in KK spacetimes, a perturbation method was developed, and small localized black

holes were constructed [13 – 17]. After these perturbative analyses, the phase diagram of

a black-hole and black-string system in fully non-linear regime was clarified in a series

of papers [18 – 20] (see also [21] for improved numerical analysis for black string branch).

The result suggests that the branches of static black hole and black string merge at a

topologically changing solution. (See recent numerical work [21, 22].)

Although the GL instability is inevitable for neutral black strings/branes, charges can

prevent them from suffering from the instability. On this point, there is an interesting

conjecture called the Correlated Stability Conjecture (CSC) (or called Gubser-Mitra con-

jecture [23, 24]), which asserts that the GL instability of black objects with a non-compact

translational invariance occurs iff they are (locally) thermodynamically unstable. This con-

jecture has been supported by several examples [25 – 27]. Although we speculate that the

charges (e.g., a charge associated with a gauge field, KK momentum, angular momentum,

and so on) play crucial roles in perturbative and non-linear regimes, our understanding of

the stability and phase structure of charged black strings/branes is restricted to very spe-

cial cases [28, 10, 29], in which the systems can be translated to a vacuum system. The aim

of this paper is to see the non-linear effects of a charge which stabilizes the uniform states

at the linear order, as the CSC asserts. For this aim, we perform the higher-order static

perturbations of magnetic black strings. And then, the physical properties of constructed

solutions are investigated. The main result is that for fixed spacetime dimensions there ex-

ist critical charges at which the order of phase transition changes in the sense that charged

NUBSs become stable, compared with the uniform ones. In other words, it means that

the stable inhomogeneous black strings are allowed to exist in each dimension. This is in

contrast to the vacuum case, in which such stable states emerge only in higher dimensions

(D ≥ 14).

The organization of this paper is as follows. In section 2 we set up the problem by

introducing an action integral, background solutions, and so on. In section 3 the linear

perturbation is analyzed to some extent. There, an interesting application of Landau theory

of phase transition to charged system is discussed. In section 4 we describe the higher-

order perturbations in detail. With the numerical results of sections 3 and 4, we discuss the

physical properties of charged NUBSs in section 5. Section 6 is devoted to summary and

discussion. Appendix A includes the general form of explicit Einstein equations. We only
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consider magnetically charged black strings in this paper. The possible other components,

corresponding to an electric field, are discussed in appendix B. The calculation of some

thermodynamic quantities are described in appendices C and D.

2. Setup

2.1 Action and background solution

We consider the following (d + 1)-dimensional action (d ≥ 4):

Id+1 =
1

16πGd+1

∫
dd+1x

√−g

[
R − 1

2(d − 2)!
F2

d−2

]
, (2.1)

where Gd+1 is a (d+1)-dimensional gravitational constant and Fd−2 is a (d−2)-form field.

We denote the total spacetime dimensions by D ≡ d+1. The equations of motion (EOMs),

obtained by varying the action, are

Rµν =
1

2(d − 3)!
F µ2...µd−2

µ Fνµ2...µd−2
− d − 3

2(d − 1)!
gµνF2,

∂µ

(√−g Fµµ2...µd−2
)

= 0. (2.2)

In addition, the form field satisfies the Bianchi identity, dFd−2 = 0.

In this paper, we find non-uniform black string solutions emerging from the GL critical

point. Given the fact that the GL critical mode is a s-wave one [30], it will be convenient

to begin with the following static axisymmetric metric ansatz:

ds2
d+1 = −e2A(r,z)dt2 + e2B(r,z)

[
e2H(r)dr2 + dz2

]
+ r2e2C(r,z)dΩ2

d−2. (2.3)

Here, we assume that the horizon of black string extends along the z-direction. For uniform

black strings, the functions A,B,C depend only on the radial coordinate r. Although the

function H(r) can be eliminated by a radial gauge transformation, we keep H(r) for later

convenience and generality. The Ricci tensor and explicit EOMs for this metric ansatz

are included in appendix A. With this metric ansatz, we can find a general solution of

magnetic field by solving Bianchi identities:

F = Qm εd−2, (2.4)

where Qm is a constant and εd−2 is the volume element of a unit (d−2)-sphere. In the rest

of this paper, we only consider magnetic solutions. Thus, the general solution (2.4) of the

form fields makes our analysis very simple; we do not need to consider the perturbations

of the form field independently. For d = 4 and d = 5, the gauge field can carry an electric

charge. In particular, the 3-form field becomes self-dual in d = 5 and the electric field gives

the same results as those for the magnetic case (appendix B).

By the dimensional reduction method, the uniform black string and black brane solu-

tions of the action (2.1) can be constructed from the black hole solutions in a d-dimensional
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dilatonic system [31]. The explicit expression of a magnetically charged black string is given

by

ds2
d+1 = −f+dt2 +

1

f+f−
dr2 + f−dz2 + r2dΩ2

d−2,

f±(r) = 1 −
(r±

r

)d−3
,

F =
√

(d − 1)(d − 3) (r+r−)(d−3)/2 εd−2. (2.5)

For 0 < r− < r+, this solution has an event horizon at r = r+ and an inner horizon at

r = r− where a curvature singularity exists. Introducing new variables by

A = a + ln
√

f+, B = b + ln
√

f−, C = c, H = −1

2
ln

[
f+f2

−

]
, (2.6)

a deformed black string can be described by

ds2
d+1 = −e2a(r,z)f+dt2 + e2b(r,z)f−

[
dr2

f+f2
−

+ dz2

]
+ e2c(r,z)r2dΩ2

d−2. (2.7)

Substituting the transformation (2.6) into the general form of Ricci tensor (A.1) and source

term (A.2), we obtain EOMs for a, b and c.

2.2 Perturbation scheme

Following [7], we can construct non-uniform black strings/branes by static perturbations,

as well as to specify the GL critical point quite easily. Before the detailed discussion, which

will be given in sections 3 and 4, let us introduce the general perturbation scheme here.

First, we rescale coordinates r, z, and “charge” parameter r− by the horizon radius:

y ≡ r

r+
, x ≡ z

r+
, q ≡ r−

r+
. (2.8)

Then, we expand the metric function X(x, y) (X = a, b, c) around the uniform solution,

X(x, y) =

∞∑

n=0

εnXn(y) cos(nKx),

Xn(y) =

∞∑

p=0

ε2pXn,p(y), K =

∞∑

q=0

ε2qkq, (2.9)

where X0,0(y) = 0 is imposed. Here K is the GL critical wavenumber, in other words,

L ≡ 2π/K gives the asymptotic length of the compactified space, and ε is an expansion

parameter. Substituting these expansions into the Einstein equations, we obtain ordinary

differential equations (ODEs), to be solved order-by-order (table 1).

To have an insight into the whole perturbation analysis, it would be nice to see the

linear perturbations. For simplicity, let us focus on d = 5, and we always restrict ourselves

to this number of dimensions when we write down perturbation equations hereafter. The

structures of EOMs and boundary conditions are similar for the other dimensions (see

– 4 –



J
H
E
P
1
2
(
2
0
0
6
)
0
4
8

Zero KK K

O(ε) X1,0 k0 ∼ O(1)

O(ε2) X0,1 X2,0

O(ε3) X3,0, X1,1 k1 ∼ O(ε2)

Table 1: Table of unknown functions up to the 3rd order. A mode Xn,p appears at O(εn+2p). The

zero modes X0,p appear at O(ε2p). In the last column, the wavenumber k0 of order O(1) and its

corrections are listed to show at which order they enter into the decoupled ODEs.

eqs. (A.1) and (A.2)). At the linear order O(ε), we have the X1,0 mode. By combining

Einstein equations, we obtain coupled ODEs, which determines a1,0(y) and c1,0(y):

L̂
[1]
k0

a1,0 + P̂ [1]c1,0 = 0,

L̂
[2]
k0

c1,0 + P̂ [2]a1,0 = 0, (2.10)

where L̂
[i]
k0

and P̂ [i] (i = 1, 2) are linear operators given by

L̂
[1]
k0

=
d2

dy2
+

6y4 − 9y6 + q2(−8 + 8y2 + 3y4)

y(q2 − y2)(2 − 5y2 + 3y4)

d

dy
+

4q4 − 4q2 + k2
0y

6(2 − 3y2)

(q2 − y2)2(2 − 5y2 + 3y4)
,

L̂
[2]
k0

=
d2

dy2
+

2[−4y2 + 6y4 − 3y6 + q2(8 − 13y2 + 6y4)]

y(q2 − y2)(2 − 5y2 + 3y4)

d

dy

+
12q4 + 4y4 + 2k2

0y
6 − 3k2

0y
8 + 4q2(3 − 10y2 + 3y4)

(q2 − y2)2(2 − 5y2 + 3y4)
,

P̂ [1] =
3[2y2 − 3y4 + q2(−6 + 7y2)]

y(q2 − y2)(2 − 5y2 + 3y4)

d

dy
− 12q2(1 + q2 − 2y2)

(q2 − y2)2(2 − 5y2 + 3y4)
,

P̂ [2] =
(−1 + y2)[3q2(−2 + y2) + y2(2 + y2)]

y(q2 − y2)(2 − 5y2 + 3y4)

d

dy
− 4[q4 + y4 − q2(1 + y4)]

(q2 − y2)2(2 − 5y2 + 3y4)
. (2.11)

The function b1,0(y) is not independent but can be written in terms of a1,0(y) and c1,0(y),

b1,0(y) =
(−1 + q2)y2a1,0 + (−1 + y2)[(6q2 − 3y2)c1,0 + y(q2 − y2)(a1,0 + 3c1,0)]

(q2 − y2)(−2 + 3y2)
.(2.12)

As we will discuss in section 3, eq. (2.10) can be solved as a shooting problem. The

equations for higher-order perturbations can be reduced to similar systems of ODEs.

2.3 Physical quantities

Here, we prepare the expressions for physical quantities of the metric (2.7), with which we

will later discuss the thermodynamics of non-uniform black strings.

To calculate asymptotic charges such as mass and tension, one has to know the asymp-

totic behavior of the metrics. As we will see in the following sections, homogeneous pertur-

bations (zero modes) appear at the second order, and they decay according to some power

law in the asymptotic region r À r+. Suppressing all exponentially small corrections,
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which comes from Kaluza-Klein (KK) modes in the first- and second-order perturbations,

we find that the leading asymptotic behaviors of the metric functions for d ≥ 5 are1

a(r, z) ' A∞

(r+

r

)d−3
,

b(r, z) ' B∞

(r+

r

)d−3
,

c(r, z) ' C1
r+

r
+ C∞

(r+

r

)d−3
, (2.13)

where A∞, B∞, C∞ and C1 are constants. From the Einstein equations in the asymptotic

region, these constants are related as

A∞ + 2B∞ + (d − 4)C∞ = 0. (2.14)

With these asymptotics, the mass per unit length M/L and relative tension n (and tension

T) in the z-direction (z ∈ [0, L]) for d ≥ 5 are computed [32, 33] as

M

L
=

Ωd−2r
d−3
+

16πGd+1

[
2(2d − 5)B∞ + 2(d − 2)(d − 4)C∞ + d − 2 + qd−3

]
, (2.15)

n ≡ LT

M
=

1 − 2(d − 4)B∞ + 2(d − 4)C∞ + (d − 2)qd−3

(d − 2)[1 + 2(d − 4)C∞] + 2(2d − 5)B∞ + qd−3
, (2.16)

where Ωd−2 = 2π(d−1)/2/Γ[(d − 1)/2] is the surface area of a unit (d − 2)-sphere.

Entropy S, temperature T , magnetic charge Q, and chemical potential ΦH are given

by

T =
d − 3

4πr+

√
f− ea−b

∣∣∣
r=r+

, (2.17)

S

L
=

Ωd−2

4Gd+1
rd−2
+

√
f−〈eb+(d−2)c〉

∣∣∣
r=r+

, (2.18)

Q

L
=

(d − 1)Ωd−2r
d−3
+

16πGd+1
q(d−3)/2, (2.19)

ΦH = (d − 3)rd−3
+ q(d−3)/2

∫ ∞

r+

dr

rd−2
〈ea+2b−(d−2)c〉, (2.20)

where 〈 · 〉 denotes an averaging in the z-direction. Here, some remarks on these quantities

may be needed. Although the z-independence of the temperature (corresponding to the

zeroth law) is not obvious from the expression (2.17), it will be verified from the boundary

conditions which state that a − b for all modes vanishes on the horizon except for the

homogeneous mode. The magnetic charge (2.19) is normalized so that we have Q/M → 1

in the extremal limit q → 1. The chemical potential (2.20) can be calculated in two ways.

One is to use the thermodynamical relation ΦH = (∂M/∂Q)S . For uniform black strings,

this method is demonstrated in appendix C. The second way is based on the electric

potential, by taking the dual field ∗F of the field F . We integrate out the dual field along

1For d = 4, the asymptotic form of c(r, z) is exceptional: c(r, z) ' C∞(r+/r) ln(r/r+).
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the z-direction, by the KK reduction, and introduce the electric potential on the horizon

by ΦH = A|r=r+
, where ∗F = dA.

According to the correlated stability argument [23, 24], the dynamical stability of the

background spacetime is closely related to its thermodynamical stability. In our case,

the thermodynamical stability is determined by the sign of a specific heat, given by (ap-

pendix C)

CQ ≡
(

∂M

∂T

)

Q

=
LΩd−2r

d−2
+

4Gd+1

√
1 − qd−3[(d − 2) − qd−3]

−1 + (d − 2)qd−3
. (2.21)

The specific heat eq. (2.21) is negative for a small charge, but it becomes positive at a

critical charge QGM, which is given parametrically by q = qGM,

qGM =
1

(d − 2)1/(d−3)
. (2.22)

Thus the system will be stable for Q > QGM. As we will see below, the GL critical mode

indeed disappears at this point, and the correlated stability is realized.

Note that the choice of thermodynamic ensemble depends on crucially on whether

we treat the charge as a parameter that has been fixed or as a parameter that can vary

freely [34, 35, 10, 36]. The above condition on the thermodynamic stability, CQ > 0, is for

a canonical ensemble, in which the temperature and charge are kept fixed. If the solution

is smeared, in a magnetic case this means the string is charged along a transverse direction,

the charge itself can redistribute freely in the smeared direction, and we have to consider

the stability in a grandcanonical ensemble in which the stability condition is specified by

the specific heat and isothermal permittivity.

3. Static linear perturbation: X1,0

3.1 Search for static mode

We can specify the critical wavenumber k0 for a given value of q by solving the coupled

ODEs (2.10) with suitable boundary conditions. Solving the EOMs in the asymptotic

region (y À 1), we see that the perturbations resulting in regular solutions must have the

following asymptotic behaviors:

a1,0, c1,0 ∼ e−k0y. (3.1)

From these asymptotics, it is understood that a1,0(y) and c1,0(y) are the KK modes, which

are localized near the horizon.

The event horizon is a regular singular point of the differential equations. Demand-

ing the regularity of the perturbations on the horizon (y = 1), the following boundary

conditions are required (for d = 5):

a′1,0|y=1 =
2(k2

0 − 6 + 16q2 − 18q4)a1,0 − 3(k2
0 − 4 + 24q2 − 20q4)c1,0

6(1 − q2)2
,

c′1,0|y=1 = 2a1,0 +
−4 + k2

0 + 16q2 − 12q4

2(1 − q2)2
c1,0. (3.2)

– 7 –
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Figure 1: Charge dependence of GL critical wavenumber k0, normalized by the inverse of the

horizon radius, for D = 5 ∼ 15. We see that the critical wavenumbers decrease monotonically

as the background charge increases. As expected from the correlated stability conjecture, these

decreasing wavenumbers vanish at the critical charge QGM, above which the background uniform

black strings are thermodynamically stable.

Thus, these boundary conditions constrain the values of perturbations and their first deriva-

tives. Since we are working on linear perturbations and the amplitude of perturbations is

specified by ε, we are free to fix the amplitude of a function at any point. Therefore, we

set c1,0(1) = 1. The regularity at the horizon requires also b1,0(1) = a1,0(1), corresponding

to the zeroth law of thermodynamics, as mentioned in section 2.3.

Now, we are ready to solve (2.10) for each q with the boundary conditions (3.1)

and (3.2). For the numerical method, we integrate (2.10) from the horizon by taking

a1,0(1) and k0 as shooting parameters. The shooting parameters resulting in regular solu-

tions for the neutral case (q = 0) are given in tables 2 for several dimensions (D = 6, 10

and 14). The charge dependence of the critical wavenumber is depicted in figure 1. We

see that k0 decreases monotonically as the background charge increases, and then vanishes

at the critical charge (2.22), above which the specific heat of the background solution is

positive. This is a clear realization of the correlated stability.

3.2 Transition

The emergence of the static mode and its associated non-uniform states at Q < QGM looks

like a phase transition in condensed matter physics.2 A simple example of phase transition

is as follows. At high temperatures, there is no order, and the “order” parameter 〈φ〉
is zero. At a critical temperature, Tc, order sets in so that, for temperatures below Tc,

〈φ〉 is nonzero. If 〈φ〉 rises continuously from zero, the transition is second order and the

specific heat has a jump discontinuity at the transition. [37]. The same thing holds for

the present case, by just replacing 〈φ〉 and T by k0 and Q, respectively, although the

“order” (translational symmetry) sets in at Q > QGM. The specific heat (2.21) also has

2We would like to thank Barak Kol, who pointed out this to us.
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a discontinuity at Q = QGM. This kind of phase transition can be well described by

the Landau phenomenological mean-field theory. The mean-field theory, in which the free

energy takes the form of f = r 〈φ〉2 + u 〈φ〉4 with u > 0, predicts a second-order phase

transition with

〈φ〉 ∼ (Tc − T )β, (3.3)

where β = 1/2 is called the critical exponent. It is interesting to see if the emergence of

the static mode follows the line of this argument. The critical exponents extracted from

the results presented in figure 1 are

β = 0.55 (D = 6), β = 0.51 (D = 7), β = 0.50 (D ≥ 8), (3.4)

These values are fairly close to the prediction of the Landau theory. (Note that we can

also analyze the critical exponent for the mass per unit length, i.e. k0M/2π, as an another

physically motivated quantity. Such analysis gives the same result as above because the

contribution of q in M is negligibly small.) β in D ≤ 7 deviates slightly from the prediction.

The determination of k0 near the GM point requires high numerical accuracy (in particular

for smaller dimensions), and hence the derived critical exponent will contain numerical

errors. Taking this into account, we are well justified in expecting that the critical exponent

for k0r+ (or k0M/2π) is exactly β = 1/2 and that it will not depend on the dimensions.

Moreover, it is an interesting issue to study the universality of this phenomenon. (See [38]

for an earlier study of this kind of observation in other systems.) However, it is beyond the

scope of this paper, and we leave it for future study. Instead, we extend the perturbative

analysis to higher orders and identify the physical properties of charged non-uniform states.

4. Static perturbations at higher orders

In this section, we discuss the structure of the EOMs, boundary conditions and asymptotics

for higher-order perturbations. For simplicity, we set the dimension to d = 5 in the rest

of this section, although the analyses are done for several spacetime dimensions. The

dimensional dependence appears mainly in the asymptotic behavior for the zero modes at

the second order. When we solve the ODEs at each order, a non-trivial task is to learn

how to fix the integration constants. We will also discuss this point to some extent, in

addition to other technical aspects. Readers who are interested only in the physical results

can jump to section 5.3

4.1 Second-order perturbation

At the second order O(ε2), we have two independent modes, X2,0 and X0,1. The former is a

second-order counterpart of X1,0, which is straightforward to integrate. On the other hand,

the latter is the lowest-order zero mode. This mode has a different structure of EOMs and

thereby the asymptotic behaviors are different from those for KK modes.

3A Mathematica notebook including numerics in this paper will be available at the author’s website,

http : //www.gravity.phys.waseda.ac.jp/eumpei.
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4.1.1 KK mode: X2,0

The EOMs for the X2,0 mode take the form of

L̂
[1]
2k0

a2,0 + P̂ [1]c2,0 = S
[1]
2,0(X1,0; k0),

L̂
[2]
2k0

c2,0 + P̂ [2]a2,0 = S
[2]
2,0(X1,0; k0), (4.1)

similar to X1,0. Here, S
[i]
2,0 represents a source term, which is quadratic in X1,0(y) and its

first derivative. The function b2,0(y) is written in terms of a2,0(y), c2,0(y) and their first

derivatives. The asymptotic behaviors in the far region are

a2,0, c2,0 ∼ e−2k0y. (4.2)

The horizon boundary conditions analogous to eq. (3.2) can be immediately obtained

from (4.1):

a′2,0(1) =
1

12(1 − q2)2

[
8(−3 + 2k2

0 + 8q2 − 5q4)a2,0 − 24(−1 + k2
0 + 6q2 − 5q4)c2,0

+2(−6 + k2
0 + 16q2 − 10q4)a2

1,0 + 3(8 + k2
0 − 48q2 + 40q4)a1,0c1,0

−3(4 + 3k2
0 − 64q2 + 60q4)c2

1,0

]
,

c′2,0(1) =
1

4(1 − q2)2

[
8(−1 + k2

0 + 4q2 − 3q4)c2,0 + 8(−1 + q2)2a2,0

+4(−1 + q2)2a2
1,0 + (−8 + k2

0 + 32q2 − 24q4)a1,0c1,0

+(4 + 3k2
0 − 40q2 + 36q4)c2

1,0

]
, (4.3)

where all functions are evaluated at y = 1. The regularity also requires b2,0(1) = a2,0(1).

By taking a2,0(1) and c2,0(1) as shooting parameters, one can easily integrate the

coupled ODEs (4.1) with the boundary conditions (4.2) and (4.3).

4.1.2 Zero mode: X0,1

The structure of EOMs for the X0,1 mode is different from those for inhomogeneous modes.

The starting point is to decouple b0,1 and c0,1 from a0,1.
4 The resultant equations for b0,1(y)

and c0,1(y) take the form of

b′′0,1 +
1

y2(−1 + y2)(2q4 − 5q2y2 + 3y4)

[
y3[5q4 − 3q2 + 9y4 + q2(1 − 12y2)]b′0,1

−3q2y(q2 − y2)(−2 + y2)c′1,0 − 2q2[2q2 + 3y2(−2 + y2)]b0,1 − 6q2(2q2 − 6y2 + 4y4)c0,1

]

= S
[1]
0,1 (X1,0; k0) ,

4This procedure is peculiar to this charged system. For the neutral case (q = 0), it is possible to decouple

b0,1 from a0,1 and c0,1, and then we can solve b0,1. Since such a equation for b0,1 contains only derivatives

of b0,1, there is a shift symmetry and thereby we can integrate it without shooting [7]. However, because

of new terms coming from gauge fields, it is hard to obtain a single equation for b0,1.

– 10 –
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c′′0,1 +
1

y2(−1 + y2)(2q4 − 5q2y2 + 3y4)

[
y
[
3y4(−3 + 4y2) + q4(−4 + 5y2)

+q2(11y2 − 15y4)
]
c′0,1 − y(q2 − y2)2(−2 + 3y2)b′0,1

+[−4q4−6y6+2q2y2(4+y2)]b0,1+2[6q4+3y6−q2y2(12+y2)]c0,1

]
= S

[2]
0,1 (X1,0; k0) , (4.4)

where S
[i]
0,1 represents a source term, which is quadratic in X1,0 and its first derivative.

Since the source terms decay exponentially in the asymptotic region, we can neglect

them there. By the asymptotic expansion, we find b0,1(y) and c0,1(y) have power-law

asymptotics, which are given in eq. (2.13). Here, noting that the constants in eq. (2.13)

are O(ε2), we write them as B∞ ' ε2b∞, C∞ ' ε2c∞, C1 ' ε2c1 (and A∞ ' ε2a∞). From

the regularity at the horizon, the horizon boundary conditions are

b′0,1|y=1 = q2(6c0,1−a2
1,0−2b0,1)+

3

4

(
k2
0

1−q2
+8q2

)
a1,0c1,0−

3

4

(
k2
0

1−q2
−12q2

)
c2
1,0, (4.5)

c′0,1|y=1 = −2(1 − 3q2)c0,1 + (1 − q2)(a2
1,0 + 2b2

1,0) −
8 + k2

0 − 32q2 + 24q4

4(1 − q2)
a1,0c1,0

+
4 − 3k2

0 − 40q2 + 36q4

4(1 − q2)
c2
1,0. (4.6)

The equation for a0,1 takes the form of

a′′0,1 +
1

y2(y2 − q2)(y2 − 1)

×
[
y[q2(2 + y2) − 3y4]a′0,1 + 3y(q2 − y2)c′0,1 + 4q2(b0,1 − 3c0,1)

]
= S

[3]
0,1(X1,0; k0). (4.7)

The asymptotic behavior is given by eq. (2.13) again. The regularity at the horizon requires

a′0,1|y=1 = − 1

12(1 − q2)2

[
2(6 + k2

0 − 16q2 + 10q4)a2
1,0 − 8(1 − q2)[(5q2 − 3)b0,1

+3(1−5q2)c0,1+3(k2
0−8+48q2−40q4)a1,0c1,0+3(4−3k2

0−64q2+60q4)c2
1,0

]
,(4.8)

Since a0,1 is decoupled from b0,1 and c0,1, all the values in the right-hand side (r.h.s.)

will be known after the integration of b0,1 and c0,1. Furthermore, we notice that the

above equation (4.7) and the boundary condition (4.8) contain only the first and second

derivatives of a0,1(y). This means that a0,1 has a shift symmetry, a0,1 → a0,1 + constant,

corresponding to the gauge degree of freedom of redefining a time coordinate. Therefore,

after integrating (4.7) with an arbitrary value of a0,1(1), one can use the shift symmetry

in order to realize a0,1 → 0 at the asymptotic region. No shooting is necessary.

Finally, we discuss the integration of eq. (4.4) for b0,1 and c0,1. It seems that we

have two constants to be fixed by asymptotic flatness, the horizon values of b0,1 and c0,1.

However, we face the known puzzle (for the uncharged case) [7, 18, 11]: any choice of

c0,1(1) results in a regular solution satisfying asymptotic flatness. The physical quantities

depend on the choice of c0,1(1), and thereby the physical quantities cannot be fixed at

this order. This apparent contradiction can be understood by the fact that the general
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conformal ansatz (2.3) has the freedom to “superpose” arbitrary O(ε2) change in the mass

on the top of the change that the non-uniformity induces [7, 18]. The same argument

holds for the present charged case: the equation (4.4) with the source term set to zero,

i.e., homogeneous equation, has a solution that corresponds to the s-wave perturbation of

a d-dimensional charged black hole. The increase of mass and charge of the black hole is

expressed as a solution to the homogeneous equations with the asymptotics (2.13). Any

multiple of such a solution to the homogeneous equation can be added to the solutions to

the inhomogeneous equations. This is the origin of the ambiguity.

Indeed, the horizon values of homogeneous solutions can be related to the change of

physical quantities as follows. Consider a uniform black string given by setting X(r, z) to

X(r) (X = a, b, c) in eq. (2.7). Introducing a conformal radial coordinate

ρ(r; r±) =

∫ r dr′√
f+(r′; r+)f2

−(r′; r−)
, (4.9)

the metric can be written as

ds2
d+1 = −e2af+dt2 + e2bf−

(
dρ2 + dz2

)
+ e2cr2dΩ2

d−2. (4.10)

In eq. (4.10), r should be regarded as a function of ρ, which we denote by r = r(ρ, r±).

The integration constant of eq. (4.9) can be fixed so that ρ = 0 ↔ r = r+. Because of

the three functional degrees of freedom, there is a solution that changes mass and charge

of the background black string. Such solutions with new parameters r′± are given by the

following homogeneous shifts of metric functions:

X(r(ρ; r±)) → X(r(ρ; r±)) + ∆X(ρ; r±, r′±),

∆a =
1

2
ln

[
f+(r(ρ; r′±); r′+)

f+(r(ρ; r±); r+)

]
, ∆b =

1

2
ln

[
f−(r(ρ; r′±); r′−)

f−(r(ρ; r±); r−)

]
, ∆c = ln

[
r(ρ; r′±)

r(ρ; r±)

]
, (4.11)

where we write f±(r) as f±(r; r±) in order to show explicitly its dependence on the param-

eter r±. Corresponding to these shifts, we must also change the charge that appears in the

r.h.s. of the Einstein equation through the field strength. With all these transformation,

the resultant solution is the charged uniform black strings with new parameter r′±. It may

be useful to derive the relation between the horizon values of the shifts and parameters r′±.

Taking the limit ρ → 0 in (4.11), we have

lim
ρ→0

∆a =− ln

(
r′+
r+

)
+ln

(
1−q′d−3

1−qd−3

)
, lim

ρ→0
∆b =

1

2
ln

(
1−q′d−3

1−qd−3

)
, lim

ρ→0
∆c =ln

(
r′+
r+

)
,(4.12)

where q′ ≡ r′−/r′+ and we have used limρ→0 r(ρ; r±) = r+.

At the practical level of calculations (perturbative expansions, etc.), it is easy to change

c0,1(1), but is cumbersome to perform the necessary shift of the parameter r± which comes

in through the field strength. If we forget the required shift of the parameter r± in the

field strength and change only c0,1(1) in our approach, the new background charge is

automatically fixed and we have no freedom to perform an arbitrary shift of b0,1(1). In

fact, as eq. (4.12) predicts, our numerical solutions confirm that

(a0,1 − 2b0,1 + c0,1)y=1 (4.13)
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D a1,0 k0 a2,0 c2,0 a0,1 b0,1 a∞ b∞ c∞ a1,1 k1

6 -0.78 1.27 0.64 -0.87 0.63 0.91 -0.93 0.65 -0.37 -0.38 1.02

10 -1.54 2.30 2.48 -1.53 0.66 1.46 -4.06 1.67 0.14 -0.44 0.12

14 -2.15 3.03 5.16 -2.14 0.43 1.90 -10.0 2.69 0.51 1.77 -6.13

Table 2: Shooting parameters (horizon values of metric perturbations and critical wavenumbers)

and asymptotic quantities for the regular normalizable solutions with Q = 0. See section 4 for their

definitions. We can use these results as initial-guess values for charged cases, Q 6= 0.

is invariant under the shift of c0,1(1), in which b0,1(1) is automatically determined as a result

of the shooting procedure. In the present paper, we want to construct the charged non-

uniform string for a fixed charge and compare its physical quantities at the fixed charge.

For this reason and to perform a clear analysis, we set c0,1(1) = 0 and solve eq. (4.4) by

taking b0,1(1) as the shooting parameter. The shooting parameter resulting in a regular

solution and the asymptotic constants for the neutral case are given in table 2. As a

consistency check, we will show later that the final result does not depend on the choice of

c0,1(1) (see figure 3).

4.2 Third-order perturbation: X1,1

In the present approach, it is necessary to know the correction to the GL critical mode, k1,

which appears at third order O(ε3). At this order, we have two independent modes, X1,1

and X3,0. However, since the equations for the latter mode X3,0 do not contain k1, it is

sufficient for our purpose to solve X1,1.

The structure of EOMs and boundary conditions for X1,1 are similar to those for the

X1,0 and X2,0 modes. By decoupling b1,1(y) from a1,1(y) and c1,1(y), we obtain EOMs for

a1,1(y) and c1,1(y), taking the form of

L̂
[1]
k0

a1,1 + P̂ [1]c1,1 = S
[1]
1,1(X1,0,X2,0,X0,1; k0, k1),

L̂
[2]
k0

c1,1 + P̂ [2]a1,1 = S
[2]
1,1(X1,0,X2,0,X0,1; k0, k1). (4.14)

The function b1,1(y) can be written algebraically in terms of a1,1(y) and c1,1(y). By solv-

ing (4.14) in the asymptotic region, we obtain asymptotic behaviors,

b1,1(y), c1,1(y) ∼ e−k0y. (4.15)

From the regularity at the horizon, a′1,1(1) and c′1,1(1) can be written in terms of a1,1(1),

c1,1(1) and the values and first derivatives of X1,0 at the horizon.

Which parameters should be determined by shooting at this order? According to [7],

the different choice of k1 corresponds to a different “scheme” (gauge). We adopt the “stan-

dard” scheme in which we set c1,p(1) = 0 for p > 0, and permit k1 to vary.5 Setting c1,1(1)

5It is also possible to set k1 = 0 in addition to c1,p = 0 (p > 0). However, this requires a technically

difficult procedure. In this case, c0,1(1) at the second order should be dealt with as a shooting parameter so

that the third-order perturbations converge at all. It means that the second- and third-order perturbations

have to be solved at the same time.
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equal to zero, we determine a1,1(1) and k1 by requiring normalizable modes. Namely, we in-

tegrate eq. (4.14) with the horizon regularity condition and the asymptotic damping (4.15)

by taking a1,1(1) and k1 as the shooting parameters, as we do at the first order.

5. Physical properties of inhomogeneous charged strings

5.1 Changes of physical quantities

With the formulae prepared in section 2.3 and perturbative quantities calculated in sec-

tions 3.1 and 4, the increase of thermodynamical quantities due to the non-uniform de-

formation can be calculated. Because the asymptotic size of the transverse circle is not

fixed (k1 6= 0), we introduce variables that are invariant under rigid rescalings of the entire

solution. Such invariant quantities can be obtained by multiplying K by suitable powers.

The relative increase of the variables is given by

δµ

µ
≡ δM

M
+ (d − 3)

δK

K
= µ1ε

2 + O(ε4),

δs

s
≡ δS

S
+ (d − 2)

δK

K
= s1ε

2 + O(ε4),

δτ

τ
≡ δT

T
− δK

K
= τ1ε

2 + O(ε4),

δϑ

ϑ
≡ δQ

Q
+ (d − 3)

δK

K
= ϑ1ε

2 + O(ε4), (5.1)

where the second-order coefficients (for d ≥ 5) are given by

µ1 =
2(2d − 5)b∞ + 2(d − 2)(d − 4)c∞

d − 2 + qd−3
+ (d − 3)

k1

k0
,

s1 = b0,1 + (d − 2)c0,1 +
[b1,0 + (d − 2)c1,0]

2

4
+ (d − 2)

k1

k0
,

τ1 = a0,1 − b0,1 −
k1

k0
,

ϑ1 = (d − 3)
k1

k0
. (5.2)

The potential and relative tension are invariant by themselves, and their relative increases

are given by

δΦH

ΦH
= ΦH1ε

2 + O(ε4),
δn

n
= n1ε

2 + O(ε4),

ΦH1 = (d − 3)

∫ ∞

1

dy

yd−2

{
a0,1 + 2b0,1 − (d − 2)c0,1 +

1

4
[a1,0 + 2b1,0 − (d − 2)c1,0]

2

}
,

n1 = −2(d − 1)(d − 3)[(1 + 2qd−3)b∞ + (d − 4)qd−3c∞]

(d − 2 + qd−3)[1 + (d − 2)qd−3]
. (5.3)

The charge dependence of these quantities are depicted in figure 2 for D = 6, 10, 14. For

D = 6 and 10, one can observe that the change of mass µ1, being positive initially at

Q = 0, decreases as the background charge increases. Then, µ1 becomes negative, e.g., at

Q ' 0.5QGM for D = 6. The increase of entropy and charge, s1 and ϑ1, behaves in a similar
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way. The temperature τ1 also behaves in a similar way but in the opposite sign; the non-

uniform black string, being “cooler” than the critical solution initially at Q = 0, becomes

“hotter” as Q increases. Some remarkable properties are that ΦH does not change the sign

and n1 changes its sign near the GM point where s1, µ1, θ1, τ1 also cross the zero axis.

The positive value of n1 has an interesting physical meaning. The uniform black string is

not necessarily the state that has the largest tension (for a fixed background charge). This

is impossible for uncharged black stings.

In figure 2, we have shown the results up to Q/QGM ' 0.95. The physical quantities

in eq. (5.2) contain the term of k1/k0, which diverges in the limit of Q → QGM, and

thereby numerical accuracy becomes relatively worse near the GM point. To confirm the

consistency of analysis and the accuracy of numerical integration, we use the Smarr formula

as an independent check.

According to ref. [39, 40], we find the following result:

(D − 3)(E − E(mat)) − (D − 2)TS − T = 0, (5.4)

where E and S are the mass and entropy density along the z-direction, respectively, and T

is the tension. E(mat) is the mass density for matter fields evaluated on the horizon. It is

given by the surface integral on the horizon at z,

E(mat)(z) =
1

(p + 2)!

∮

H
dSMNP1···PpFMNP1···PpφH(r+, z), (5.5)

where φH(r+, z) is the density of electric potential at z. Taking the dual of eq. (2.4) and

substituting it into the above formula, the mass density for the matter field is found to be

E(mat) ∝ (Q/L)φH . Integrating (5.4) over the z direction yields the Smarr formula which

holds even for the non-uniform black strings:

(D − 3)M − (D − 2)TS − LT − (D − 4)QΦH = 0. (5.6)

This formula can be also rewritten in terms of relative tension n as

TS

M
+

d − 3

d − 1
ΦH

(
Q

M

)
=

d − 2 − n

d − 1
. (5.7)

Now we expand all physical quantities as power series of parameter ε:

Y =

∞∑

p=0

Ypε
2p, (Y = M,S, etc.), (5.8)

Substituting the expansion into eq. (5.7), we obtain the following relation at O(ε2),

δS1 + δT1 − δM1 +
n0

d − 2 − n0
δn1+

+
(d − 3)Q0ΦH0

(d − 1)S0T0

(
n0

d − 2 − n0
δn1 − δM1 + δQ1 + δΦH1

)
= 0, (5.9)

where we abbreviate δY1 ≡ Y1/Y0. We can replace the quantity δY1 by the scale invariant

quantity, e.g., δM1 → µ1, in eq. (5.9). Therefore, eq. (5.9) is a constraint equation that

the physical quantities must obey. Substituting our solutions into the Smarr formula, we

have confirmed that the Smarr formula holds within a relative error of only a few percent.
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Figure 2: The differences of physical quantities (5.1) and (5.2) between the non-uniform and the

critical uniform black strings for each value of background charge Q for D = 6, 10, 14. For D = 6

and 10 (≤ 13) one can see that all quantities except ΦH1 change their signs. To obtain the results,

we have adopted c0,1(1) = 0.

5.2 Thermodynamical stability in microcanonical and canonical ensembles

We are ready to study the stability of the inhomogeneous charged black strings. First,

let us focus on the entropy comparison in a microcanonical ensemble, namely, the entropy

difference between the non-uniform black string and a corresponding uniform black string

of the same mass and charge. Such a difference is given by

SNU − SU

SNU
= σ1ε

2 + σ2ε
4 + O(ε6),

σ1 = s1 −
d − 2 + Φ2

H0

(d − 3)(1 − Φ2
H0)

µ1 +
(d − 1)Φ2

H0

(d − 3)(1 − Φ2
H0)

ϑ1,

σ2 =
(d − 1)Φ2

H0 ϑ1

d − 2 − Φ2
H0

{
d − 2

2(d − 3)

[
ϑ1 −

d − 2 − Φ2
H0

(d − 2)(1 − Φ2
H0)

ΦH1

]
− s1

}

−s1

2

[
1 − (d − 2)Φ2

H0

d − 2 − Φ2
H0

s1 + τ1

]
. (5.10)

These equations can be derived by starting from the frame with δK = 0 and re-expressing

the results in terms of the invariant quantities (5.2). (See appendix D for the details of
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Figure 3: The difference of entropy σ2 (free energy ρ2) between the non-uniform and uniform

black strings of the same mass (temperature) and charge for D = 6, 10, 14. QI,cr and QII,cr with

the vertical lines show the locations of the critical charges. In each figure, we plot three results

obtained by setting c0,1(1) = 0, +1,−1, although they cannot be distinguished from each other. For

D ≤ 13, the non-uniform string with QI,cr < Q < QII,cr has larger entropy than the uniform string.

For D ≥ 14, the free energy difference is never positive, and the first critical charge does not exist.

calculation.) The first law of thermodynamics requires σ1 = 0. The vanishing of σ1 indeed

holds with permissible numerical errors (a few percent relative errors) except near the GM

point, e.g., Q & 0.95QGM. Thus, the difference of entropy appears at O(ε4). Note that

we have used σ1 = 0 to simplify the expression of σ2. If σ2 is positive, it means that the

non-uniform state has larger entropy than the uniform state and the non-uniform state is

more stable. If σ2 is negative, the uniform state is more favorable. For the uncharged case,

the latter case is realized for D ≤ 13, and the former case is for D ≥ 14.

The dependence of σ2 on the background charge Q is depicted in figure 3 for D =

6, 10, 14. As expected from the sign change of µ1, observed in the previous section, the sign

of σ2 changes depending on the background charge. For D ≤ 13, σ2, being negative initially

at Q = 0, increases as the charge increases, and it becomes positive at some critical charge

Q = QI,cr. However, the increase is not monotonic, rather, σ2 has a peak. Increasing the
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charge furthermore toward the GM point, σ2 falls off and becomes negative at a second

critical charge Q = QII,cr. The numerical value of the second critical charge corresponds

to the zero-crossing point of n1 (or the second zero crossing of s1, µ1, etc.). This behavior

near the GM point is general. For instance, σ2 for D = 10 shows similar behavior. A

quantitative difference is that the first critical charges are achieved by smaller charges,

while the second critical charge does not change so much. For D ≥ 14, since σ2 is initially

positive at Q = 0, the first critical charge that we observed for D ≤ 13 is absent, and only

the “second” critical charge exists. Above the critical charge, the non-uniform strings have

less entropy, as we see for D ≤ 13 near the GM point.

The sign change of σ2 is an interesting phenomenon. In the present system, the charge

works as a parameter that controls the order of transition between the uniform and non-

uniform states. For QI,cr < Q < QII,cr in D ≤ 13, the stable phase of the non-uniform

state emerges, realizing the second-order transition from the uniform phase. In addition

to this, a second remarkable feature is that the non-uniform states become less stable near

the GM point (Q > QII,cr). It is hard to provide a physical reason for these phenomena.6

However, the second feature may be related to the fact that the non-uniform state itself

vanishes at the GM point.

Next, let us focus on the Helmholtz free energy (F = M−TS) in a canonical ensemble,

namely, the comparison of free energy between the non-uniform black string and a uniform

black string of same temperature and charge. Such a difference is given by

FNU − FU

FNU
= ρ2ε

4 + O(ε6), (5.11)

ρ2 = − (d − 3)(1 − Φ2
H0)

2[1 + (d − 2)Φ2
H0]

{
(d − 1)Φ2

H0ϑ1

[1 − (d − 2)Φ2
H0]

[
ϑ1

d − 3
+2τ1−

1 − (d − 2)Φ2
H0

(d − 3)(1 − Φ2
H0)

ΦH1

]

+τ1

[
s1 +

(d − 2) − Φ2
H0

1 − (d − 2)Φ2
H0

τ1

]}
, (5.12)

where we have used the first law of thermodynamics (appendix D). Again the difference

appears at O(ε4).

The results are shown in figure 3 for D = 6, 10, 14. For the uncharged case, ρ2 is

positive (for D ≤ 12), and thus the uniform state is more favorable due to the smaller

free energy. As expected from the results of entropy comparison, the sign of ρ2 changes

as the charge increases. However, in this canonical ensemble, the sign changes only once.

ρ2 tends to decease monotonically, and the critical charge is almost exactly the same as

QI,cr for the entropy comparison. It is remarkable that the critical charge does not exist

for D ≥ 13 and ρ2 is always negative. This result can be understood with the general

behavior of ρ2 discussed above and with the fact that ρ2 for Q = 0 becomes negative for

D ≥ 13. Therefore, the non-uniform phase in the canonical ensemble for D ≥ 13 is stable

irrespective of the charge.

6The global thermodynamic consideration, in which the entropy is compared between a uniform black

string and a localized black hole of same mass (and charge), provides us an intuitive guess for the critical

dimension/charge (e.g. [8, 29]). The present system, however, is out of the global argument since the

corresponding localized black hole solution, if any, cannot couple to the gauge field of the same type.
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Figure 4: Dimensional dependence of physical quantities, e.g., s1, µ1, etc., in addition to the

entropy difference σ2 and free energy difference ρ2, for uncharged black strings (Q = 0). s1 and µ1

become negative at D = 14 and τ1 becomes positive at D = 13. n1 does not change its sign. σ2

and ρ2 change their sign at D ≈ 13.5 and D ≈ 12.5, respectively [8, 10]. These results suggest that

the phase transition from the uniform to non-uniform black strings in a microcanonical (canonical)

ensemble is first order for 5 ≤ D ≤ 13 (5 ≤ D ≤ 12) and higher order for D ≥ 14 (D ≥ 13).

Finally, it is worthwhile to note that in figure 3 we have also shown the results obtained

by taking c0,1(1) = +1,−1, in addition to our standard choice c0,1(1) = 0. The three lines

overlap completely, and we cannot distinguish between them. As we have discussed in

section 4.1.2, there is a subtlety in the choice of c0,1(1), but the present result means that

our analysis is consistent and c0,1(1) does not affect the final results, as expected.

5.3 Comparison with the criticality of uncharged system

As we have already mentioned, we know that the stability of uncharged non-uniform string

depends on the spacetime dimensions. (The number of extended transverse dimensions on

tori Tp is not irrelevant [11], and so we consider co-dimension one case of black string.)

It is of great interest to compare the transition caused by the charge with the dimension-

dependent transition of uncharged strings. In figure 4, we show the dimensional dependence

of physical quantities of uncharged non-uniform string. We also plot the entropy difference

and free-energy difference in figure 4.

Compared with figures 2 and 3, we see large differences in their qualitative behavior.

The common behavior is that s1, µ1, τ1 change their sign. For the charged case, the zero

crossing of s1, µ1, τ1 occurs almost simultaneously, in contrast to the uncharged case. Be-

cause of this feature, the critical charges in the canonical ensemble and the microcanonical

ensemble are almost identical, while the critical dimensions for the two ensembles are dif-

ferent. A second striking disparity is that the charged system has a second critical charge.

This would be related to the fact that the GL static mode vanishes in the limit of Q → QGM

while the static mode survives in the limit of D À 1 [9].

6. Summary and discussion

We have constructed the perturbatively non-uniform black strings (NUBS) coupled with
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the gauge field. At the first order of perturbation, we have confirmed the realization of the

correlated stability, i.e., the vanishing of the Gregory-Laflamme mode at the point where

the background uniform black string (UBS) becomes thermodynamically stable. We have

pointed out that the emergence/vanishing of the static mode resembles phase transitions.

In fact, we have identified the critical exponent for the wavenumber of the static mode and

found that the critical exponent is very close to β = 1/2, which means a second-order phase

transition. However, this result does not necessarily mean that the charged non-uniform

black strings will arise from the uniform ones as a result of a second-order transition. This

is because the black hole system is different in several aspects from the ordinary system

in condensed matter [7], and, in addition, k0 does not directly specify the state after the

transition, but specifies only the point where such a state emanates.

The analysis of higher-order static perturbations allows us to study the charged non-

uniform state with its (thermodynamic) stability. Our analysis shows that the charged

non-uniform strings can have larger entropy than the corresponding uniform string in the

appropriate range of charge (figure 3). This means that by adjusting the background charge

the smooth transition (evolution) from the uniform state to non-uniform state becomes

possible. This is in contrast to the uncharged system: we have known that uncharged

black strings can have larger entropy (and smaller free energy) than that of uniform ones

of the same mass (temperature) only in large spacetime dimensions, D ≥ 14 (D ≥ 13).

For the unchanged system, the phases of uniform and non-uniform states can be de-

scribed by an analogous method of the Landau theory [11, 12], where the external non-

ordering field is the inverse of temperature. In the present case, the charge is a new

non-ordering field, and because of this, phase diagrams should become multidimensional.

Such a system can be also described by the Landau theory. Consider the following Landau

free energy:

f ∼ u2φ
2 + u4φ

4 + · · · , (6.1)

where the higher order terms maintaining stability are abbreviated. u2 is a function of

the non-ordering field, for instance, u2 ∝ (T−1 − T−1
crit) near the critical temperature in

the uncharged case [11, 12]. If u4 is positive, a second-order transition is predicted, while

there is a first-order transition if u4 is negative. Like the normal-to-superfluid transition

in liquid helium mixtures, u4 can depend on non-ordering variables and its sign can vary.

For the two non-ordering fields, the so-called tricritical point appears, at which three

phases of disordered state and ordered states with first- and second-order transitions meet.

Clearly, our charged system fits this argument. u4 depends on charge (and temperature).

It is an interesting issue to extend and refine the argument, based on [11, 12]. In the

following, instead of pursuing its precise implementation, we discuss the (M,n) phase

diagram gathering all the information that we know.

A mass-tension (M,n) diagram is commonly used to classify the black objects in the

KK compactification. We project out the degree of freedom of charge on the (M,n)-plane

and consider the phase on this plane. In figure 5, we illustrate a (M,n) diagram for a

charged system (D ≤ 13). Although L ∝ 1/k0 diverges in the GM limit (Q = QGM), the

mass per unit length remains finite, so that we adopt it in the figure. The sequence of the
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marginally stable charged uniform black strings (UBS) is given by eqs. (2.15) and (2.16),

and the non-uniform branch can be read off from figure 2. Corresponding to µ1 < 0 in

QI,cr < Q < QII,cr, the branch of NUBS declines in the region. However, the corrections to

the mass and tension become µ1 > 0, n1 > 0, and then the branch of NUBS ascends near

the GM point. These behaviors show that the phase space of black hole and string has a

very rich structure.

Basing our ideas on this phase structure, let us speculate about a possible dynamical

evolution of sufficiently charged black strings with σ2 > 0. First of all, we adopt the plau-

sible assumption that the conservation of magnetic charge prevents pinching-off uniform

black strings/branes. (This is also expected from the fact that the black hole cannot couple

to the same type of form field.) Thus a possible scenario is that once the uniform black

string reaches the GL point, via radiation, etc., the unstable critical string will transit to

a non-uniform black string adiabatically if the charge is appropriately chosen so that the

non-uniform branch is less massive and entropically favored. At present, the dynamical

stability of non-uniform black stings is not known. However, it is possible that a shrinking

part of the wavy (apparent) horizon will locally evolve into the extremality, and the sta-

bilization works locally, making the whole black string stabilized in the end. Therefore, a

wavy black string would be a possible end state in such a dynamical evolution. To identify

the sequence of evolution, it will be useful to construct charged non-uniform black strings

non-perturbatively. Since there is no corresponding branch of black holes carrying the same

type of charge, we have no reason to expect that the branch of black string remains near

the uncharged one even for a weak charge. Therefore, it is interesting to know how the

branch deviates from that of an uncharged string at large non-uniformity.

So far, we have discussed the phase space in Q < QGM where the static modes exist.

However, the phase space in Q > QGM may be also interesting to explore. An argument

proposed by Horowitz and Maeda [41] is that (stable) non-uniform black strings would

exist near the extremality. Such a solution has not been discovered so far, and it will be

interesting to know how the branches of near-extremal non-uniform black strings emerge

and how they are embedded in the diagram. However, we should recall here that the

scenario of such new branch is possible only when cycles on the horizon cannot shrink

to zero size. So if it can pinch off, a near-extremal non-uniform black string is not an

inevitable result.

Finally, let us comment on possible extensions of the work. For simplification, we have

not taken into account the dilaton, but it will be straightforward to include the dilaton

and other types of gauge fields. As discussed above, it is important to figure out the phase

structure in fully non-linear regimes in the present system. This problem will be addressed

in our forthcoming paper. The dynamical evolution of GL instability in a charged system

will be the most challenging problem. To see what happens dynamically when the charge

crosses the critical value will be quite fascinating. The dynamics of a string’s evolution

may change drastically at the critical charge. This can be achieved by a straightforward

extension of the analysis in [4], and the result will also provide an expectation for the

dynamical evolution of uncharged black strings above the critical dimension (D ≥ 14).
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1

Figure 5: An illustration of charged non-uniform black strings (NUBS) in a (M, n) plane, by

projecting the charge axis on (M, n) plane (D ≤ 13). The branch of uncharged NUBS and black

hole are based on [20]. Since the GL wavelength, and hence the bare mass, diverges in the limit

Q → QGM, we plot the mass per unit length, M/L, where L is the critical GL wavelength L = 2π/K.

The vertical dot-dashed lines represent uniform black strings with fixed changes, and the filled circles

shows the sequence of critical GL points of a charged system. Since there is no static mode for

Q > QGM, the sequence of the critical GL point terminates at Q = QGM. The lines with arrows

show the direction in which the branch of charged NUBS emanates. The direction of arrows can

be read off from figure 2.
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A. Einstein equations in static axisymmetric spacetimes

We present the Ricci tensor components for the general metric ansatz (2.3). Here, we denote

the partial derivatives by ∂rA = A′ and ∂zA = Ȧ. In addition, we specify the coordinates

of the angular part by dΩ2
d−2 = dθ2

1 + sin2 θ2
1dθ2

2 + · · ·+ sin2 θ1 · · · sin2 θd−3dθ2
d−2. The Ricci

tensor is calculated as follows:

Rtt = e2A−2B−2H

{
e2HȦ

[
Ȧ+(d−2)Ċ

]
+A′

[
A′−H ′+(d−2)

(
C ′+

1

r

)]
+e2HÄ+A′′

}
,

Rrr =
(d − 2)H ′

r
− e2HḂ

[
Ȧ + (d − 2)Ċ

]
+ A′

(
H ′ − A′ + B′

)

+(d−2)C ′

(
H ′−C ′− 2

r

)
+B′

[
H ′+(d−2)

(
C ′+

1

r

)]
−[A+B+(d−2)C]′′−e2HB̈,
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Rzz = Ȧ(Ḃ − Ȧ) + (d − 2)Ċ(Ḃ − Ċ)

+e−2HB′

[
H ′−A′−(d−2)

(
C ′+

1

r

)]
−Ä−B̈−(d−2)C̈−e−2HB′′,

Rθ1θ1
= r2e−2B+2C−2H

{
H ′

r
− A′

r
− (d − 3)

[
1 − e2(B−C+H)

]

r2
− e2H Ċ

[
Ȧ + (d − 2)Ċ

]

+C ′

[
4 − 2d

r
+ H ′ − A′ − (d − 2)C ′

]
− e2H C̈ − C ′′

}
,

Rrz = (Ḃ−Ȧ)A′+
[
Ȧ+(d−2)Ċ

]
B′+(d−2)

(
Ḃ−Ċ

) (
C ′+

1

r

)
−Ȧ′−(d−2)Ċ ′, (A.1)

and the other angular components are given by Rθ1

θ1
= Rθ2

θ2
= · · · = R

θd−2

θd−2
. For the mag-

netic field given by F = Qεd−2, the non-zero components of the r.h.s. of the Einstein

equation (2.2), which we denote by Sµν , are

St
t = Sr

r = Sz
z = − d − 3

2(d − 1)

Q2

r2(d−2)e2(d−2)C
,

Sθi

θi
=

1

d − 1

Q2

r2(d−2)e2(d−2)C
, (i = 1, 2, . . . , d − 2). (A.2)

B. Other form field components

In this paper, we focus only on the angular parts of the form field F . In d = 4 and d = 5,

however, the form field can have other components, corresponding to an electric field. In

this section, we briefly discuss these components compatible to the conformal ansatz (2.3).

For d = 5, Ftrz component can exist in addition to (2.4). We put this part as

Fe = E(r, z) ωt ∧ ωr ∧ ωz, (B.1)

where ωt = eAdt, ωr = eB+Hdr and ωz = eBdz. Substituting this into EOM (2.2), we

obtain a solution

E(r, z) =
Qe

r3e3C
, (B.2)

where Qe is an integration constant. The solution (B.2) is the general solution of electric

field, which we ignored in our analysis. Note that since the 3-form is self-dual in 6 di-

mensions, the electric and magnetic parts contribute to the Einstein equation in a similar

manner: if we consider the electric and magnetic part simultaneously, the source term of

the Einstein equation is obtained just by replacing the magnetic charge Q2 in (A.2) by

Q2 + Q2
e. In other words, the electric field in d = 5 can be analyzed in parallel with the

magnetic one, and therefore the self-duality does not affect the final results.

For d = 4, the electric components in addition to (2.4) are possible and they are given

by

Fe = Er(r, z) ωt ∧ ωr + Ez(r, z) ωt ∧ ωz + Erz(r, z) ωr ∧ ωz. (B.3)

From the EOMs, we find Erz = Qrz/(r
2e2C+A), where Qrz is an integration constant. This

is the general solution of r-z component. The other components are given by solving the
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EOM and Bianchi identities:

(∂r + 2r−1)(eB+2CEr) + eH∂z(e
B+2CEz) = 0,

∂r(e
A+BEz) − eH∂z(e

A+BEr) = 0. (B.4)

C. Specific heat and chemical potential

We derive the formula for the specific heat used in section 2.3. First of all, note that every

thermodynamical quantity of uniform black strings (a = b = c = 0) can be written as

functions of r+ and q. From eq. (2.19), we have

q =
1

r2
+

[
16πGd+1

(d − 1)LΩd−2
Q

]2/(d−3)

. (C.1)

Substituting (C.1) into the mass formula (2.15) or the product of S and T , one finds

rd−3
+ =

16πGd+1

LΩd+1

M

2(d − 2)

(

1 +

√

1 − 4(d − 2)

(d − 1)2
Q2

M2

)

=
16πGd+1

LΩd+1

ST

2(d − 3)

(

1 +

√
1 +

4(d − 3)

d − 1

Q2

ST

)

. (C.2)

Let us first discuss the specific heat. Utilizing (C.1) and (C.2), the r.h.s. of the tem-

perature (2.17) can be written in terms of Q and ST , i.e., T = T (Q,ST ). Differentiating

this equation with respect to S, we easily find (∂S/∂T )Q, and the specific heat is evaluated

by

CQ ≡
(

∂M

∂T

)

Q

= T

(
∂S

∂T

)

Q

, (C.3)

which yields the result (2.21).

The method explained above is the most straightforward for obtaining thermodynamic

quantities, e.g., the specific heat. However, it is sometimes difficult to get an explicit

expression of a thermodynamic quantity in terms of relevant thermodynamic variables. In

such cases, it is necessary to perform rather messy calculations. Instead of such a direct

method, we explain a systematic method to calculate thermodynamic variables which have

parametric representations.

As an illustration, we begin with the calculation of chemical potential. The chemical

potential is given by

ΦH ≡
(

∂M

∂Q

)

S

=

(
∂M

∂r+

)

q

(
∂r+

∂Q

)

S

+

(
∂M

∂q

)

r+

(
∂q

∂Q

)

S

. (C.4)

To calculate (∂r+/∂Q)S and (∂q/∂Q)S , the charge Q(r+, q) is brought into the form of

Q = Q(r+, q(S, r+)) = Q(r+(S, q), q). Differentiating these expressions with respect to r+
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and q as
(

∂Q

∂r+

)

S

=

(
∂Q

∂r+

)

q

+

(
∂Q

∂q

)

r+

(
∂q

∂r+

)

S

,

(
∂Q

∂q

)

S

=

(
∂Q

∂q

)

r+

+

(
∂Q

∂r+

)

q

(
∂r+

∂q

)

S

, (C.5)

and substituting them into (C.4), we finally obtain ΦH = q(d−3)/2. By replacing variables

suitably in the above calculation of chemical potential, we can easily calculate the specific

heat CQ.

D. Entropy and free energy difference

We use the expansion (5.8) again for all relevant physical quantities. The entropy difference

between the non-uniform and uniform black strings for same mass and charge is given by

SNU − SU

SU
=

∑∞
p=0 Spε

2p

S0 + ∆S
− 1

= ε2

[
S1

S0
−∆S(1)

S0

]
+



S2

S0
−∆S(2)

S0
−S1

S0

∆S(1)

S0
+

(
∆S(1)

S0

)2


 ε4+O(ε6),(D.1)

where ∆S =
∑

p=1 ∆S(p)ε2p is the difference of entropy between the critical uniform black

string and the uniform black string that has the same mass and charge as the non-uniform

black string.

S1/S0 and S2/S0 in (D.1) are easily computed from the first law for a fixed asymptotic

length of the circle, dM = TdS + ΦHdQ. Integrating the first law with the expansion, we

obtain

M1 = T0S1 + ΦH0Q1,

M2 = T0S2 +
1

2
T1S1 + ΦH0Q2 +

1

2
ΦH1Q1. (D.2)

Furthermore, from formulae (2.15), (2.17), (2.18), and (2.19), we can find that the mass of

uniform black string M0 can be written in two ways:

M0 =
d − 2 + qd−3

(d − 3)(1 − qd−3)
T0S0 =

d − 2 + qd−3

(d − 1)q(d−3)/2
Q0. (D.3)

The first equality can be also confirmed by the Smarr formula. From (D.2) and (D.3), we

can write S1/S0 and S2/S0 in terms of M1/M0, M2/M0, Q1/Q0, Q2/Q0, ΦH1/ΦH0 and

T1/T0.

Here, we focus on the quantity ∆S/S0 in (D.1). As mentioned before, ∆S is the entropy

change of the uniform black string due to the change of mass and charge. Therefore, ∆S

can be computed by

∆S '
(

∂S

∂M

)

Q

∆M +

(
∂S

∂Q

)

M

∆Q

+
1

2

(
∂2S

∂M2

)

Q

∆M2 +
1

2

(
∂2S

∂Q2

)

M

∆Q2 +

(
∂2S

∂Q∂M

)
∆Q∆M, (D.4)
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where S, M , and Q are for uniform strings (a = b = c = 0). One can obtain the explicit

dependence of S on M and Q by substituting the expressions of q and r+, eqs. (C.1)

and (C.2), into eq. (2.15). But, it seems to be easiest to calculate (D.4) as follows. The

partial derivatives of S with respect to M and Q in eq. (D.4) are given by

(
∂

∂M

)

Q

=

(
∂r+

∂M

)

Q

(
∂

∂r+

)

q

+

(
∂q

∂M

)

Q

(
∂

∂q

)

r+

,

(
∂

∂Q

)

M

=

(
∂r+

∂Q

)

M

(
∂

∂r+

)

q

+

(
∂q

∂Q

)

M

(
∂

∂q

)

r+

. (D.5)

From eq. (2.19), r+ and q are rewritten as r+ = r+(Q, q) and q = q(Q, r+), so M(r+, q)

can be written as M = M(r+(Q, q), q) = M(r+, q(Q, r+)). Differentiating these relations

with respect to r+ and q, we obtain the coefficient in eq. (D.5). Then, by setting ∆M =

M1ε
2 + M2ε

4 and ∆Q = Q1ε
2 + Q2ε

4, we obtain ∆S = ∆S(1)ε2 + ∆S(2)ε4.

We can find the leading term to be the same as the one for the non-uniform black

string:

∆S(1)

S0
= δS1 =

d − 2 + Φ2
H0

(d − 3)(1 − Φ2
H0)

δM1 −
(d − 1)Φ2

H0

(d − 3)(1 − Φ2
H0)

δQ1, (D.6)

where we again abbreviate δY1 = Y1/Y0 (Y = S, M, Q). Hence the term of order O(ε2)

vanishes in the entropy difference and the leading order correction comes from O(ε4). Note

that M2/M0 and Q2/Q0 cancel out in the final expression as expected from the cancellation

at the order O(ε2). In the end the entropy difference for the same mass and charge is given

by

SNU − SU

SU
=

(d − 1)Φ2
H0 δQ1

d − 2 − Φ2
H0

{
d − 2

2(d − 3)

[
δQ1 −

d − 2 − Φ2
H0

(d − 2)(1 − Φ2
H0)

δΦH1

]
− δS1

}
ε4

−δS1

2

[
1 − (d − 2)Φ2

H0

d − 2 − Φ2
H0

δS1 + δT1

]
ε4, (D.7)

where we have used the relation (D.6) to simplify the result. Last, by replacing δY1 for

invariant quantities, we have eq. (5.10).

The derivation of the formula for the free-energy comparison is possible in a similar

way to that of entropy. First of all, the free energy (F = M − TS) of a uniform solution

can be written in two ways from eqs. (2.15), (2.17), (2.18), and (2.19):

F0 =
1 + (d − 2)qd−3

(d − 3)(1 − qd−3)
T0S0 =

1 + (d − 2)qd−3

(d − 1)q(d−3)/2
Q0. (D.8)

The difference of free energy between uniform and non-uniform black strings is given by

FNU − FU

FU
=

∑∞
p=0 Fpε

2p

F0 + ∆F
− 1, (D.9)

where ∆F is the free-energy change of a uniform black string due to the change of tem-

perature and charge, which we denote by ∆T and ∆Q, respectively. From the definition
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of the free energy and the first law, we obtain dF = −SdT + ΦHdQ. Integrating this by

using the expansion (5.8),

F1 = −S0T1 + ΦH0Q1,

F2 = −S0T2 −
1

2
S1T1 + ΦH0Q2 +

1

2
ΦH1Q1. (D.10)

Using (D.8) and (D.10), F1/F0 and F2/F0 are written in terms of T1/T0, T2/T0, Q1/Q0,

Q2/Q0, ΦH1/ΦH0, and S1/S0.

Now, we focus on the term of ∆F/F0 in (D.9). A necessary correction of the free

energy to the uniform string is

∆F '
(

∂F

∂T

)

Q

∆T +

(
∂F

∂Q

)

T

∆Q

+
1

2

(
∂2F

∂T 2

)

Q

∆T 2 +
1

2

(
∂2F

∂Q2

)

T

∆Q2 +

(
∂2F

∂Q∂T

)
∆Q∆T,(D.11)

where the differential operators acting on F are evaluated by using the following relation:

(
∂

∂T

)

Q

=

(
∂r+

∂T

)

Q

(
∂

∂r+

)

q

+

(
∂q

∂T

)

Q

(
∂

∂q

)

r+

,

(
∂

∂Q

)

T

=

(
∂r+

∂Q

)

T

(
∂

∂r+

)

q

+

(
∂q

∂Q

)

T

(
∂

∂q

)

r+

. (D.12)

Here, for example, the coefficient (∂r+/∂Q)T is computed as follows. From eq. (2.17),

r+ and q are rewritten as r+ = r+(T0, q) and q = q(T0, r+), and the charge Q(r+, q) can

be written as Q = Q(r+(T0, q), q) = Q(r+, q(T0, r+)). Differentiating these relations with

respect to r+ and q, we obtain the coefficient.

We find that the correction of O(ε2) vanishes as for the entropy difference.

∆F (1)

F0
= δF1 =

1

1 + (d − 2)Φ2
H0

[
(d − 1)Φ2

H0 δQ1 − (d − 3)(1 − Φ2
H0) δT1

]
. (D.13)

Thus, the non-vanishing leading term comes from O(ε4):

FNU − FU

FU
= − (d − 3)(1 − Φ2

H0)

2[1 + (d − 2)Φ2
H0]

{
Φ2

H0(d − 1)δQ1

[1 − (d − 2)Φ2
H0]

[
δQ1

d − 3
+ 2δT1 (D.14)

− 1−(d−2)Φ2
H0

(d−3)(1−Φ2
H0)

δΦH1

]

+δT1

[

δS1+
(d − 2) − Φ2

H0

1−(d−2)Φ2
H0

δT1

]}
ε4.
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